Orthopedic Conditions & Sports Injuries

Characteristics of mesenchymal stem cells derived from Wharton’s jelly of human umbilical cord and for fabrication of non-scaffold tissue-engineered cartilage

Once cartilage is damaged, it has limited potential for self-repair. Autologous chondrocyte implantation is an effective treatment, but patients may suffer during cartilage harvesting and the donor-site morbidity may accelerate joint degeneration. Using autologous mesenchymal stem cells (MSCs) derived chondrocytes is another selection, while it also causes some injuring. The umbilical cord, an ecto-embryo tissue may be an ideal source of cells, because of its accessibility, abundant resources, painless procedures for harvesting, and lack of ethical issues. MSCs isolated from Wharton’s jelly of human umbilical cord express characteristics of pre-chondrocytes, low immunogenicity and are easy to be obtained with higher purity because there have no hematopoietic cells in Wharton’s jelly, so it may be a new seed cells more suitable for constructing tissue-engineered cartilage.

Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration

This study focuses on stem cell based therapeutics for . cartilage and intervertebral disc (IVD) repair. It concludes that mesenchymal stem cell based therapies offer huge potential to revolutionize the treatment of cartilage defects and IVD degeneration

Regeneration of Full‐Thickness Rotator Cuff Tendon Tear After Ultrasound‐Guided Injection With Umbilical Cord Blood‐Derived Mesenchymal Stem Cells in a Rabbit Model

Rotator cuff tendon tear is one of the most common causes of chronic shoulder pain and disability. In this study, they investigated the therapeuticeffects of ultrasound‐guided human umbilical cord blood (UCB)‐derived mesenchymal stem cell (MSC) injection to regenerate a full‐thickness subscapularis tendon tear in a rabbit model by evaluating the gross morphology and histology of the injected tendon and motion analysis of the rabbit’s activity.

Human umbilical cord-derived mesenchymal stem cells reduce monosodium iodoacetate-induced apoptosis in cartilage

Based on the present findings, this study conclude that human umbilical cord mesenchymal stem cells (HUCMSCs) can fulfill mesenchymal stem cell (MSC) characteristics with mesoderm differentiation capability. HUCMSCs can assist monosodium iodoacetate (MIA)-treated mice in regeneration of hyaline cartilage and/or repair of cartilage damage and in ameliorating cartilage apoptosis. These effects can be associated with motor behavioral improvement. Thus, HUCMSCs may be a feasible source for stem cell treatment for Osteoarthritis (OA) cartilage repair.

Effects of insulin-like growth factor-induced Wharton jelly mesenchymal stem cells toward chondrogenesis in an osteoarthritis model

This study aimed to determine the collagen type II (COL2) and SOX9 expression in interleukin growth factor (IGF-1)-induced Wharton’s Jelly mesenchymal stem cells (WJMSCs) and the level of chondrogenic markers in co-culture IGF1-WJMSCs and IL1β-CHON002 as osteoarthritis (OA) cells model.

Effect of nicotine on the proliferation and chondrogenic differentiation of the human Wharton’s jelly mesenchymal stem cells

Osteoarthritis (OA) is a chronic joint disease characterized by a progressive and irreversible degeneration of articular cartilage. Among the environmental risk factors of OA, tobacco consumption features prominently, although, there is a great controversy regarding the role of tobacco smoking in OA development. Among the numerous chemicals present in cigarette smoke, nicotine is one of the most physiologically active molecules.

Human Wharton’s Jelly Mesenchymal Stem Cells Maintain the Expression of Key Immunomodulatory Molecules When Subjected to Osteogenic, Adipogenic and Chondrogenic Differentiation In Vitro: New Perspectives for Cellular Therapy

This study suggests that after the acquisition of a mature phenotype, Wharton’s jelly mesenchymal stem cell (WJMSCs)-derived cells may maintain their immune privilege. This evidence, which deserves much work to be confirmed in vivo and in other mesenchymal stem cells (MSCs) populations, may provide a formal proof of the good results globally achieved with WJMSCs as cellular therapy vehicle.

Cartilage Repair in the Knee Using Umbilical Cord Wharton’s Jelly–Derived Mesenchymal Stem Cells Embedded Onto Collagen Scaffolding and Implanted Under Dry Arthroscopy

Cell-based cartilage repair procedures are becoming more widely available and have shown promising potential to treat a wide range of cartilage lesion types and sizes, particularly in the knee joint. This study presents a technique of cartilage repair in the knee using Wharton’s jelly–derived mesenchymal stem cells (MSCs) embedded onto scaffolding and implanted in a minimally invasive fashion using dry arthroscopy.

Role of mesenchymal stem cells in osteoarthritis treatment

Without an effective cure, Osteoarthritis (OA) remains a significant clinical burden on our elderly population. The advancement of regenerative medicine and innovative stem cell technology offers a unique opportunity to treat this disease. In this study, they examine OA and the likely resolution with mesenchymal stem cells (MSCs). MSCs have been one of the highlights in stem cell research in recent years. Although the application of MSCs in joint repair is well established, it is particularly exciting about MSCs being used for OA treatment.

Mesenchymal stem cells for cartilage regeneration in osteoarthritis

In summary, this study shows that mesenchymal stem cells (MSCs) can be employed successfully to treat mild to moderate osteoarthritis (OA) through various ways. They provide alternative treatment options and treatment can start early during progression of OA. The traditional major surgeries used to treat late stages are expensive and come with risks. The less invasive techniques outlined in this review have revealed good outcomes, but the field merits further investigation. Superior outcome was evident with greater quantity of MSCs injected. Allogenic cells from healthy young donors can also be utilized. These findings have further empowered researchers to investigate the potentials of MSCs for tissue engineering and a number of clinical trials are now underway. Most of the emphasis on minimally invasive therapeutic alternatives including intraarticular injections of MSCs, aim to cut out cost and risks of major surgeries.

OFFICE HOURS


Monday
9:00am - 7:00pm


Tuesday
10:00am - 6:00pm


Wednesday
9:00am - 7:00pm


Thursday
9:00am - 5:00pm


Friday
9:00am - 5:00pm


Saturday
Closed

Iowa Wellness Center

1395 Jordan Street Suite C
North Liberty, IA 52317

(319) 289-0666