Umbilical Cord & Wharton's Jelly

Immunosuppressive properties of mesenchymal stromal cells derived from amnion, placenta, Wharton's jelly and umbilical cord

This study aimed to explore alternative sources of mesenchymal stromal cells (MSC), as deriving cells from bone marrow is an invasive procedure. The study sought out more accessible sources of MSC, such as from amnion, placenta, Wharton’s jelly and umbilical cord, which are usually discarded. The study concluded that these alternative sources may potentially be used in place of bone marrow-derived MSCs in several therapeutic applications.

Immune characterization of mesenchymal stem cells in human umbilical cord Wharton’s jelly and derived cartilage cells

This study focused on the immune characterizations of mesenchymal stem cells, derived from Wharton’s jelly found in human umbilical cords. It was found that these cells have very low immunogenicity and good potential to tolerate rejection. Their intermediate state between adult and embryonic stem cells makes them an ideal candidate for reprogramming to the pluripotent status.

https://www.sciencedirect.com/science/article/abs/pii/S0008874912001220

Compared with human bone marrow-derived mesenchymal stem cells (hBMSCs), human umbilical cord-derived mesenchymal stromal cells (hUCMSCs) have the advantages of abundant supply, painless collection, no donor site morbidity, and faster and longer self-renewal in vitro. In this 6-week study, a chondrogenic (forming cartilage from condensed mesenchyme tissue) comparison was conducted of hBMSCs and hUCMSCs in a three-dimensional (3D) scaffold for the first time.

Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression

All mesenchymal stem cells (MSCs) tested were phenotypically similar and of fibroblastoid morphology. Dental pulp mesenchymal stem cells (DP-MSCs) and umbilical cord mesenchymal stem cells (UBC-MSCs) were more proliferative than bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells(AT-MSCs).

Ultrastructural and immunocytochemical analysis of multilineage differentiated human dental pulp- and umbilical cord-derived mesenchymal stem cells

The results demonstrate that at the biochemical and ultrastructural level, that dental pulp-derived MSCs (DPSC) display at least bilineage potential, whereas umbilical cord-derived MSCs (UCSC), which are developmentally more primitive cells, show trilineage potential. It is emphasized that transmission electron microscopical analysis is useful to elucidate detailed structural information and provides indisputable evidence of differentiation. These findings highlight their potential therapeutic value for cell-based tissue engineering.

Endothelial differentiation of Wharton's jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells

These results showed that umbilical cord Wharton’s jelly mesenchymal stem cells (UC-MSCs) had higher endothelial differentiation potential than bone marrow mesenchymal stem cells (BM-MSCs). Therefore, umbilical cord mesenchymal stem cells (UC-MSCs) are more favorable choice than bone marrow mesenchymal stem cells (BM-MSCs) for neovascularization (the natural formation of new blood vessels) of engineered tissues.

Feasibility, Safety, and Tolerance of Mesenchymal Stem Cell Therapy for Obstructive Chronic Lung Allograft Dysfunction

The results of this study suggest that it is safe and feasible to provide cell therapy with intravenous infusion of bone marrow‐derived mesenchymal stem cells (MSCs) to lung transplant recipients with moderate obstructive CLAD, warranting future studies to assess the effectiveness of this therapy for management of acute or chronic graft dysfunction.

Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy

The human umbilical cord is a promising source of mesenchymal stem cells (HUCMSCs). Unlike bone marrow stem cells, human umbilical cord mesenchymal stem cells (HUCMSCs) have a painless collection procedure and faster self-renewal properties. This review critically evaluates their therapeutic value, challenges, and future directions for their clinical applications.

Comparative Characterization of Cells from the Various Compartments of the Human Umbilical Cord Shows that the Wharton’s Jelly Compartment Provides the Best Source of Clinically Utilizable Mesenchymal Stem Cells

The human umbilical cord (UC) is an attractive source of mesenchymal stem cells (MSCs) with unique advantages over other MSC sources. They have been isolated from different compartments of the UC but there has been no rigorous comparison to identify the compartment with the best clinical utility. This study compared the histology, fresh and cultured cell numbers, morphology, proliferation, viability, stemness characteristics and differentiation potential of cells from the amnion (AM), subamnion (SA), perivascular (PV), Wharton’s jelly (WJ) and mixed cord (MC) of five UCs.

Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC

Mesenchymal stem cells (MSC) from birth-associated tissues, preferably parts of the placenta and the umbilical cord/Wharton’s jelly (UC- and WJ-MSC) may offer certain advantages. These include their non-invasive and ethically non-problematic availability. More importantly, MSC from these neonatal tissues possess increased proliferative (to multiply rapidly producing more tissue) capacity in vitro, in comparison to some MSC populations obtained from adult tissues.

The umbilical cord matrix is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood

According to the critical parameters of sample selection described in this study, and using different culture media proposed to enhance the growth of mesenchymal stem cells (MSC), in parallel with the use of different methods of cell isolation, the researchers were not able to establish MSC cultures from more than one out of 15 UCB samples. Given the high frequency of MSC in UCM, the study hypothesizes that there may be MSC contamination while collecting cord blood. This may explain the rare described cases where MSC isolation from UCB has been possible. However, it could not be ascertained whether the collection method may have caused the disappearance of circulating MSC from the cord blood MNC compartment in favor of the endothelial/subendothelial layer of the UCM. They conclude that UCB can be excluded as a reliable source of MSC in favor of the richer and more reproducible source that is the UCM, meaning the umbilical cord matrix (UCM) is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood (UCB).

Umbilical Cord Tissue Offers the Greatest Number of Harvestable Mesenchymal Stem Cells for Research and Clinical Application: A Literature Review of Different Harvest Sites

This study discusses how large variations in cell harvest yields remain for each major tissue site for mesenchymal stem cells (MSCs) as reported in literature to date. Reviewed research supports the understanding that placental tissue provides the highest concentration of cells whereas adipose tissue offers the highest levels of autologous cells. Consequently, considerations must be made regarding the non-autologous nature of umbilical cord derived stem cells, as well as the increased post-harvest processing required for adipose-derived stem cells, for the purposes of research and clinical application.

Discarded Wharton’s Jelly of the Human Umbilical Cord: A Viable Source for Mesenchymal Stem Cells

This study discusses how Wharton’s jelly is a predominantly good source of cells because mesenchymal stem cells (MSCs) in Wharton’s jelly (WJ-MSC) are maintained in a very early embryological phase and therefore have retained some of the primitive stemness properties. WJ-MSCs can easily differentiate into a plethora of cell types leading to a variety of applications. WJ-MCSs are still the ideal future for cell therapy; their properties of high proliferation capability and versatility to differentiate between three lineages allow them to lower immunogenicity and have the potential to treat an array of diseases and disorders.

Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy

The human umbilical cord is a source of MSCs that have: (i) a unique combination of prenatal and postnatalMSCs properties; (ii) no ethical problems with obtaining biomaterial; (iii) significant proliferative and differentiation potential; (iv) lack of tumorigenicity; (v) karyotype stability; (vi) high immunomodulatory activity.

Human Umbilical Cord-Derived Mesenchymal Stem Cells Do Not Undergo Malignant Transformation during Long-Term Culturing in Serum-Free Medium

In this study, there was no obvious chromosome elimination, displacement, or chromosomal imbalance as determined from the guidelines of the International System for Human Cytogenetic Nomenclature. Telomerase activity was down-regulated significantly when the culture time was prolonged. Further, no tumors formed in rats injected with human umbilical cord mesenchymal stem cells (hUC-MSCs) cultured in serum-free and in serum containing conditions.

Comparative Analysis Of Bone Marrow and Wharton’s Jelly Mesenchymal Stem/Stromal Cells

Taken together, Wharton’s jelly mesenchymal stem cells (WJ-MSCs) display decreased cellular senescence after extended in vitro culture, increased proliferative capacity and reduced potential to differentiate in vitro to adipocytes and osteocytes, as compared to bone marrow mesenchymal stem cells (BM-MSCs). The last two observations can be explained, at least partly, by the aberrant expression of Wnt-signaling molecules in WJ-MSCs. The emerging role of Wnt-signaling pathway in WJ-MSC biology is currently under investigation.

Mesenchymal stem cells derived from Wharton’s Jelly of the umbilical cord: biological properties and emerging clinical applications

This study suggests there is accumulating interest in identifying alternative sources for mesenchymal stem cells (MSCs). To this end MSCs obtained from the Wharton’s Jelly (WJ) of umbilical cords (UC) have gained much attention over the years since they can be easily isolated, without any ethical concerns, from a tissue which is discarded after birth. Furthermore, MSCs derived from Wharton’s Jelly represent a more primitive population than their adult counterparts, opening new perspectives for cell-based therapies.

Wharton’s Jelly Derived Mesenchymal Stem Cells: Future of Regenerative Medicine? Recent Findings and Clinical Significance

Taken together, the clinical implication of oxidative stress, telomere length, DNA damage and disease has impaired the therapeutic potential of mesenchymal stem cells (MSC) isolated from aged patients. These changes in MSC biology indicate that aged patients may require an alternative source of stem cells for treatment. The high efficiency of Wharton’s Jelly mesenchymal stem cells (WJ-MSC) recovery, the minimal ethical concerns associated with its acquirement and use, low immunogenicity, and the fact that they are from healthy, young donors make them an ideal source of MSC for autologous and allogeneic applications.

Wharton’s jelly as a reservoir of peptide growth factors

The amounts of peptide growth factors calculated per microgram of DNA are distinctly higher in Wharton’s jelly in comparison to the umbilical cord artery. Western blot analysis demonstrated that almost the entire amount of these factors is bound to high molecular weight components. Since the number of cells in Wharton’s jelly is very low and the amounts of extracellular matrix components are very high, it is concluded that the cells are strongly stimulated by peptide growth factors to produce large amounts of collagen and glycosaminoglycans.

OFFICE HOURS


Monday
9:00am - 7:00pm


Tuesday
10:00am - 6:00pm


Wednesday
9:00am - 7:00pm


Thursday
9:00am - 5:00pm


Friday
9:00am - 5:00pm


Saturday
Closed

Iowa Wellness Center

1395 Jordan Street Suite C
North Liberty, IA 52317

(319) 289-0666